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Abstract Arbuscular mycorrhizal (AM) fungi are obli-
gately biotrophic organisms that live symbiotically with
the roots of most plants. The establishment of a func-
tional symbiosis between AM fungi and host plants in-
volves a sequence of recognition events leading to the
morphological and physiological integration of the two
symbionts. The developmental switches in the fungi are
triggered by host signals which induce changes in gene
expression and a process leading to unequivocal recog-
nition between the two partners of the symbiosis. It has
been calculated that about 80% of plant families from
all phyla of land plants are hosts of AM fungi. The re-
maining plant species are either non-mycorrhizal or
hosts of mycorrhizas other than the arbuscular type.
Non-host plants have been used to obtain information
on the factors regulating the development of a func-
tional symbiosis. The aim of this present review is to
highlight present-day knowledge of the fungal develop-
mental switches involved in the process of host/non-
host discrimination. The following stages of the life cy-
cle of AM fungi are analysed in detail: spore germina-
tion, presymbiotic mycelial growth, differential branch-
ing pattern and chemotropism, appressorium forma-
tion, root colonization.

Introduction

The establishment of a functional symbiosis between
arbuscular mycorrhizal (AM) fungi and host plants in-
volves a sequence of recognition events leading to the
morphological and physiological integration of the two
symbionts. Developmental switches in the fungi are
triggered by host signals which induce changes in gene
expression and a process leading to unequivocal recog-

nition between the two partners of the symbiosis
(Smith and Read 1997).

When growing in natural plant ecosystems and en-
countering plant roots, AM fungi discriminate against
the many surrounding non-hosts (Read 1991; Giovan-
netti et al. 1994). The aim of this review is to highlight
current knowledge of the key events of the AM fungi
life cycle and to discuss the developmental switches in
the fungi involved in the process of host/non-host dis-
crimination.

Which plants are non-hosts of AM fungi?

It has been calculated that about 80% of plant families
from all phyla of land plants are hosts of AM fungi.
Non-mycorrhizal plant families have been described
among these non-hosts, and non-mycorrhizal species
and genera have been reported in mycorrhizal families
(Hirrel et al. 1978; Trappe 1987). Experimental data
obtained in a 3-year study showed the occurrence of all
the different types of mycorrhizas in a Mediterranean
plant ecosystem on the isle of Brioni (Croatia). The
survey showed arbuscular mycorrhizas in about 75% of
plant species, whith the remaining 25% represented by
non-mycorrhizal plants (7%) or plants hosting mycorr-
hizas other than the arbuscular type (18%) (Matosevic
1996).

An interesting, thorough survey of all the data col-
lected on non-mycorrhizal species in different geogra-
phical areas by Tester et al. (1987) details the occur-
rence of mycorrhizas in non-mycorrhizal families. Since
many reports concerned field-collected samples, the au-
thors stressed the importance of the method to be used
for assessing the mycorrhizal status of any plant spe-
cies, i.e. “... to grow plants in pot-cultures ensuring ex-
posure of the roots to infective propagules”.

Most hosts of non-arbuscular mycorrhizas never es-
tablish functional arbuscular mycorrhizal symbioses in
nature. Plants of the Orchidaceae, Ericaceae, Monotro-
paceae and Pyrolaceae have been reported as exclusive
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hosts of orchid, ericoid, arbutoid, and monotropoid my-
corrhizas, respectively. Among ectomycorrhizal plants,
only a few genera have been found to be hosts also of
arbuscular mycorrhizal fungi, e.g. Eucalyptus, Alnus,
Populus, Fraxinus (Malajczuck et al. 1981; Lapeyrie
and Chilvers 1985; Chilvers et al. 1987; Gonçalves and
Martins-Loução 1996). Root colonization by Glo-
mus–type vesicles and hyphae, not always coupled with
arbuscules, has been reported in Abies, Pseudotsuga
and Tsuga (Càzares and Smith 1992, 1996). Further
studies using different experimental approaches to as-
certain the mycorrhizal status of Pinaceae would be
useful.

Fungal developmental switches in the presence of
non-hosts

AM fungi are obligate biotrophs living symbiotically in
the roots of host plants. For the establishment of the
symbiosis, the key events in the life cycle of AM fungi
are spore germination and the pre-symbiotic mycelial
growth phase, differential hyphal branching, appresso-
rium formation, root colonization and arbuscule devel-
opment (Giovannetti et al. 1994). This sequence does
not occur when AM fungi are challenged with non-host
roots and thus the life cycle of these obligate symbionts
is interrupted. Detailed analyses of the behaviour of
fungal symbionts in the presence of non-hosts im-
proved our understanding of the cellular and molecular
plant responses to AM fungi and the development of a
functional symbiosis (Gianinazzi-Pearson et al. 1996).

The developmental switches in the life cycle of AM
fungi affected by the presence of non-host plants are
discussed in the following sections.

Spore germination

Since the first experimental work of Barbara Mosse in
1959, it has been possible to germinate AM fungi in ax-
enic culture in the absence of the host (Mosse 1959).
This suggests that host-derived signals are not essential
for the germination of AM fungal propagules.

No conclusive data have been obtained on the ef-
fects of host roots or root exudates on spore germina-
tion. Depending on the experimental conditions and
both the plant and fungus, host roots either positively
affect germination or have no effect (Powell 1976; Dan-
iels and Trappe 1980; Graham 1982; Tommerup 1984;
Gemma and Koske 1988; Becard and Pichè 1989; Gian-
inazzi-Pearson et al. 1989; Suriyapperuma and Koske
1995; Giovannetti et al. 1993a; Schreiner and Koide
1993a). Inhibitory effects on spore germination by non-
host root extracts have been shown; living non-host
roots or root exudates do not influence this develop-
mental stage, although contrasting results were ob-
tained with Brassica spp. root factors (Ocampo and Az-
còn 1980; Azcòn and Ocampo 1984; El-Atrach et al.

Table 1 Germination percentages of Glomus mosseae sporocarps
in the presence of roots of different plant species. All values are
not significantly different from control (Pp0.01) (C. Logi, unpub-
lished data)

Plant species Germination percentage

Host of arbuscular mycorrhizas
Ocimum basilicum 94.3

Host of arbuscular and
ectomycorrhizas

Alnus glutinosa 94.0
Hosts of ectomycorrhizas

Abies alba
Pinus nigra

83.6
98.2

Host of arbutoid mycorrhizas
Arbutus unedo 94.0

Host of ericoid mycorrhizas
Vaccinium myrtillus 98.0

Nonmycorrhizal plants
Brassica oleracea

Brassica napus
Beta vulgaris

Dianthus caryophyllus
Eruca sativa

Nasturtium officinale
Spinacia oleracea

78.0
94.0
92.0
94.0
91.0
93.8
96.0

Control 92.3

1989; Gianinazzi-Pearson et al. 1989; Avio et al. 1990;
Bécard and Piché 1990; Vierheilig and Ocampo 1990a,
b; Schreiner and Koide 1993a).

Spore germination of Glomus mosseae in vivo in the
presence of host or non-host roots was neither stimu-
lated by host roots nor inhibited by non-host roots (Ta-
ble 1). Thus, at least at the stage of spore germination,
AM fungi are unable to discriminate between hosts and
non-hosts.

Pre-symbiotic mycelial growth

Research on the growth of AM fungi in axenic culture
has shown that many factors affect pre-symbiotic myce-
lial growth. Negative effects were observed in the pres-
ence of particular inorganic and organic compounds in
the culture media, and hyphal length was generally in-
creased by unsterile soil or flavonoids (Mosse 1959,
1962; Hepper 1979, 1983, 1984; Gianinazzi-Pearson et
al. 1989; Bécard et al. 1992; Morandi et al. 1992).

Many authors have reported increased hyphal
growth, both in vitro and in vivo, in response to root
exudates or volatiles from host plants, before physical
contact between the symbionts (Mosse 1962; Mosse and
Hepper 1975; Graham 1982; Hepper 1984; Carr et al.
1985; Mosse 1988; Bécard and Piché 1989; Gianinazzi-
Pearson et al. 1989; Tsai and Phillips 1991; Nair et al.
1991; Giovannetti et al. 1993a; Poulin et al. 1993;
Schreiner and Koide 1993c; Ishii et al. 1997). As to
whether AM fungi are able to discriminate against non-
hosts during the pre-symbiotic growth stage there is no
evidence for the release of inhibitory compounds by
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living non-host roots, and non-hosts appear to lack fac-
tors capable of hyphal growth promotion (Glenn et al.
1985, 1988; Gianinazzi-Pearson et al. 1989; Avio et al.
1990; Bécard and Piché 1990; Vierheilig and Ocampo
1990a, b; Koske and Gemma 1991; Giovannetti et al.
1993a; Schreiner and Koide 1993c; Giovannetti et al.
1994).

Differential branching pattern and chemotropism

It is now widely accepted that host roots, as well as pro-
moting hyphal growth in AM fungi, also induce
changes in hyphal growth pattern and morphology by
increasing branching and inducing short, branched hy-
phal fans (Mosse and Hepper 1975; Graham 1982; van
Nuffelen and Schenck 1984; Elias and Safir 1987; Bé-
card and Fortin 1988; Mosse 1988; Giovannetti et al.
1993b, 1994; Smith and Read 1997). Such differential
hyphal morphogenesis can be detected in vivo as early
as 24 h after challenging the fungal mycelium with host
roots (Giovannetti et al. 1993b; Giovannetti 1997). Dif-
ferential branching has been described also in hyphae
of Gigaspora spp. as they approach host root exudates
in vitro (Nagahashi et al. 1996) and in hyphae of Glo-
mus mosseae growing on membranes bearing host root
exudates (Logi 1997).

When mycelium is grown in the presence of non-
host roots, neither non-mycorrhizal plants nor plants
hosting mycorrhizas other than the arbuscular type
emit volatiles or exudates able to elicit differential
branching in AM fungal hyphae. Moreover, in plant
species able to induce hyphal branching fungus also de-
veloped appressoria, suggesting that these two mor-
phogentic events are related (Giovannetti et al. 1994).

Among the compounds released in root exudates,
flavonoids have been suggested to be involved in stimu-
lation of pre-contact hyphal growth and branching
(Gianinazzi-Pearson et al. 1989; Siqueira et al. 1991),
which is consistent with their role as signalling mole-
cules in other plant-microbe interactions. However,
maize plants unable to produce chalcone synthase, a
key enzyme in flavonoid biosynthesis, were found to
develop arbuscular mycorrhizas, suggesting that such
compounds are not essential to the symbiosis (Bécard
et al, 1995).

Directional growth of AM fungal hyphae towards
host roots has also been reported (Mosse and Hepper
1975; van Nuffelen and Schenck 1984; Mugnier and
Mosse 1987). The ability to locate host roots by chemo-
tropic growth has been shown in aerial hyphae of Gi-
gaspora gigantea (Koske 1982; Gemma and Koske
1988). Further studies of the mechanisms of host loca-
tion by AM fungal hyphae are needed to ascertain
whether contact with host roots is the result of passive
chance encounters or fungal ability to locate the source
of the stimulus.

Appressorium formation

The formation of appressoria is the most significant
sign of fungal recognition of a potential host plant (Sta-
ples and Macko 1980). This important stage of the fun-
gus life cycle has been studied only recently, mainly in
connection with factors affecting appressorium forma-
tion (Lackie et al. 1987; Garriock et al. 1989; Giovan-
netti et al. 1993a). Appressoria are formed in the pres-
ence of host roots as early as 36 h after the beginning of
the plant-fungus interaction (Fig. 1). Differentiation of
these structures is followed rapidly by root penetration,
colonization and arbuscule formation, which in host
plants may occur as early as 48 h after the beginning of
the interaction (Giovannetti and Citernesi 1993; Giov-
annetti 1997). Investigation of signals inducing the for-
mation of infection structures has shown that, even in
the presence of host root exudates, thigmotropic stimuli
in the form of nylon, silk, cellulose, polyamide or glass
threads did not elicit the differentiation of appressoria
(Giovannetti et al. 1993a). However, specific topogra-
phical signals may be involved in mediating appresso-
rium formation, as shown in other biotrophic fungi
(Hoch et al. 1987; Teruhne et al. 1993). In fact, hyphal
growth is frequently orientated along epidermal
grooves and appressoria are formed over clinal and an-
ticlinal wall junctions between adjacent epidermal cells
(Garriock et al. 1989; Giovannetti et al. 1993a).

Many investigations of infection structure formation
on non-host plant roots found no appressoria forma-
tion (Powell 1976; Malajczuck et al. 1981; Glenn et al.
1985, 1988; Avio et al. 1990; Parra-Garcia et al. 1992;
Giovannetti et al. 1993a, 1994). There are some reports
of abortive entry points and/or slight root colonization
on roots of non-hosts growing alone or together with
host plants, although details of appressoria were not
given (Morley and Mosse 1976; Trinick 1977; Ocampo
1980, 1986; Bedmar and Ocampo 1986).

It is important to note that the term “appressorium”
has been used in some reports to describe hyphal tip
enlargements produced on non-host roots or dead host
wall fragments (Tommerup 1984; Nagahashi and
Douds 1997). However, the morphological characteris-
tics of these structures resemble the “swellings” noted
by Glenn et al. (1985, 1988) and Giovannetti et al.
(1993a, 1994), which are also formed on host and dead
non-host roots (Figs. 2–4) Moreover, appressoria have
been defined also as hyphal apices attached to the root
surface, regardless of whether they are swollen (Tom-
merup 1984). This controversy indicates the need for a
clearcut definition of “appressoria” in AM fungi to
avoid misinterpretation of experimental data.

Some nodulation mutants of pea (Pisum sativum cvs.
Frisson, Finale, Sparkle) completely devoid of mycorr-
hizal infection (Myc–1 Nod– phenotype) were consid-
ered as potentially useful model systems for studying
the mechanisms of non-host discrimination by AM fun-
gi (Duc et al. 1989). Unfortunately, the early recogni-
tion events in these mutants are the same as in other
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O
Fig. 1 Appressoria and intraradical coils formed by Glomus mos-
seae on the roots of the host Prunus cerasifera; bar 35 mm
Fig. 2 Hyphal swellings formed by G. mosseae on the edge of two
contiguous dead epidermal root cells of the non-host Lupinus al-
bus; bar 28 mm
Fig. 3 Hyphal swelling formed by G. mosseae when growing on
dead roots of the host Medicago sativa; bar 18 mm
Fig. 4 Hyphal swelling formed by G. mosseae when growing on
dead roots of the host Pisum sativum; bar 23 mm
Fig. 5 Appressoria formed by G. mosseae on the root surface of a
mycorrhiza-resistant mutant of Pisum sativum; bar 55 mm
Fig. 6 G. mosseae hypha invading dead epidermal root cells of
the host Pisum sativum; bar 18 mm
Fig. 7 Vesicles formed by Glomus microcarpum in the roots of
the non-host Arbutus unedo; bar 70 mm

Fig. 8 Scheme representing fungal developmental switches de-
pendent on the plant genome. A Non-host plant roots are unable
to induce differentiation in AM fungal hyphae. B Myc–1 early mu-
tants trigger the formation of infection structures, but further de-
velopmental steps are hindered by host defence responses. C
Myc–2 mutants trigger appressorium formation, followed by intra-
radical colonization, but complete arbuscule differentiation is hin-
dered

host plants, and AM fungi undergo the same develop-
mental steps to appressoria formation as in parental
cultivars. The subsequent penetration of infection hy-
phae developing from appressoria (Fig. 5) is hindered
in Myc–1 mutants by the plant defence response of ab-
normally, thick cell wall appositions at the sites where
appressoria are formed (Gollotte et al. 1993). Thus,
AM fungi are able to recognize Myc–1 mutant roots as
host roots. Interestingly, no pea mutant hindering ap-
pressorium differentiation has yet been found and,
thus, all the mutants obtained so far are not altered in
genes important for host recognition by AM fungi (L.
Avio, unpublished results).

Transgenic plants constitutively overexpressing de-
fence-related genes and showing increased resistance to
root fungal pathogens, also considered interesting mod-
el systems of early symbiotic interactions with AM fun-
gi, are colonized in the same way as normal host plants
(Vierheilig et al. 1993, 1995).

In conclusion, appressoria are formed by AM fungi
after recognition of host signals at the root surface, re-
gardless of the outcome of the interaction, whereas
their development is not elicited on the surface of non-
host roots. Non-host roots appear to be unambiguously
recognized by AM fungi at this stage of the interaction.
The question of whether the activity of antifungal com-
pounds produced by some non-mycorrhizal plants is in-
volved in their lack of susceptibility to AM fungi has
not yet been answered (Vierheilig and Ocampo 1990a,
b; Koide and Schreiner 1992; Schreiner and Koide
1993a, b).

Root colonization

After the differentiation of appressoria, AM fungi
usually colonize host roots by forming intercellular and
intracellular hyphae and intracellular arbuscules. Two
main anatomical types have been identified in arbuscu-
lar mycorrhizas (Arum and Paris), their occurrence de-
pending on the host plant genome (Smith and Read
1997).

Many authors have described the colonization of
non-host roots with intercellular development of fungal

hyphae, often associated with the formation of vesicles
(Malloch and Malloch 1981; Taber and Strong 1982;
Giovannetti and Lioi 1990; Càzares and Smith 1992;
Càzares and Trappe 1993; Guerrero 1996; Treu et al.
1996). Vesicles in arbuscular mycorrhizal host roots
usually occur after arbuscule development. In contrast,
vesicles in non-host roots have been detected in the ab-
sence of arbuscules. Ultrastructural observations of
non-host Brassica roots colonized by Glomus mosseae
showed that intracellular colonization occurred only
when cells were dead, i.e. when no plasma membrane
was present (Glenn et al. 1985). Moreover, AM fungi
have been described as being able to colonize different
organs or tissues of host and non-host plants and to
form swellings and intraradical vesicles (Park and Lin-
derman 1980; Stasz and Sakai 1984; Warner 1984; Giov-
annetti and Lioi 1990). The absence of both appressoria
and arbuscules in these interactions between AM fungi
and plant tissues suggests the lack of any recognition
event leading to the establishment of a functional sym-
biosis (Figs. 6, 7) and instead a rather parasitic type of
colonization.

In pea mutants forming non-nitrogen fixing or de-
fective nodules (Myc–2 Nodc/– phenotype), AM fungi
are able to differentiate appressoria, penetrate host
roots and develop intercellular hyphae, without com-
pleting arbuscule formation (Fig. 8) (Gianinazzi-Pear-
son and Dénarié 1997). In this kind of root coloniza-
tion, infected cortical cells lack the ATPase activity
usually present in the peri-arbuscular membrane of ful-
ly developed functional symbioses (Gianinazzi-Pearson
et al. 1991, 1995). This suggests that a further signal is
necessary for arbuscule differentiation and that this sig-
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nal is lacking as a consequence of a gene mutation in
Myc–2 pea mutants.

What is non-host for AM symbionts?

The mechanisms which determine the non-host nature
of plant species, preventing the establishment of a func-
tional AM symbiosis, are not known at the genetic lev-
el. The absence of signals regulating morphogenic
changes in AM fungal mycelium, either during pre-con-
tact growth or at the root surface, may explain the “im-
munity” of non-host plants. Nevertheless, present
knowledge of the sequence of fungal development
leading to establishment of functional AM symbioses
suggests that the non-host nature of plants lies in their
inability to trigger expression of fungal genes involved
in hyphal commitment to the symbiotic status.
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